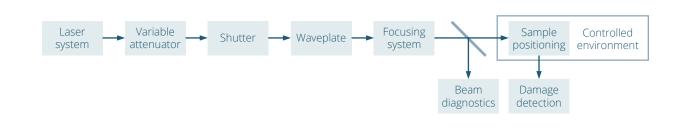


LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

S-ON-1 (ISO 21254-2) TEST PROCEDURE


SAMPLE: SO_FS_10MM

Request from	
Address	Altechna R&D Mokslininkų g. 6A, 3 aukštas LT-08412 Vilnius Lithuania
Contact person	Giedrė Šareikaitė
Purchase order	PO-0000249
Testing institute	
Address	UAB Lidaris Saulėtekio al. 10 10223 Vilnius Lithuania
Tester	Marijus Mickus
Test date	3/17/2020
Sale order	SO1764
Test ID	YMG7MY
Specimen	
Name Type	SO_fs_10mm Uncoated (S1 Uncoated)
Packaging	Plastic box

TEST EQUIPMENT

Test setup

Laser and its parameters

Туре	Mode-locked Yb:KGW
Manufacturer	Light Conversion
Model	Pharos SP
Central wavelength	1030.0 nm
Angle of incidence	0.0 deg
Polarization state	Linear
Pulse repetition frequency	100 Hz
Spatial beam profile in target plane	TEMOO
Beam diameter in target plane (1/e ²)	$(100.5 \pm 1.2) \mu m$
Longitudinal pulse profile	Single longitudinal mode
Pulse duration (FWHM)	212.4 fs (assuming Gaussian pulse shape)
Pulse to pulse energy stability (SD)	0.6 %

Energy/power meter

Manufacturer Model Calibration due date Ophir 12A-P-ROHS 2020-07-01

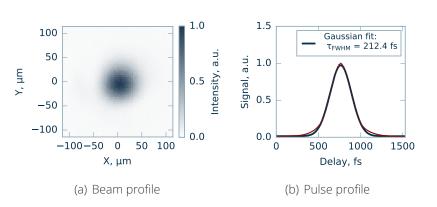


Figure 1. Laser parameters used for measurements.

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero. ¹

LID of the sample is investigated by performing a standardized S-on-1 test procedure.² LIDT value is determined by taking the average of the highest fluence value before which no damage was observed and the lowest fluence value at which damage was first observed.

Test sites	
Number of sites	541
Arrangement of sites	Hexagonal
Minimum distance between sites	360 μm
Maximum pulses per site	1000
Damage detection	
Online	Scattered light diode
Offline	Nomarski microscope
Test environment	
Environment	Air
Cleanroom class (ISO 14644-1)	ISO8
Pressure	1 bar
Temperature	22 C
Humidity	20 %
Sample preparation	
Storage before test	Normal laboratory conditions
Dust blow-off	Canned air
Cleaning	None

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011) ²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

LIDT TEST RESULTS

LIDT VALUE

10³-on-1

 $2.23 \substack{+0.13 \\ -0.13} \mathrm{J/cm^2}$

CHARACTERISTIC DAMAGE CURVE

Table 1: Estimated LIDTs from fiting model for sample SO_fs_10mm.

Test mode	Threshold (Catastrophic)	Threshold (Offline detection - microscop
1-on-1	3.52 ^{+0.18} _{-0.18} J/cm ²	3.42 ^{+0.18} _{-0.18} J/cm ²
10-on-1	2.85 ^{+0.19} _{-0.18} J/cm ²	2.85 ^{+0.19} _{-0.18} J/cm ²
10 ² -on-1	2.44 ^{+0.15} _{-0.15} J/cm ²	2.29 ^{+0.16} _{-0.15} J/cm ²
10 ³ -on-1	$2.34 \substack{+0.14 \\ -0.14}$ J/cm ²	2.23 ^{+0.13} _{-0.13} J/cm ²
6 Sample nam Wavelength Pulse durati Repetition r AOI: Polarization Beam diame	1030 nm on (FWHM): 212.4 fs ate: 100 Hz 0 deg Linear	 Catastrophic 95% confidence interval Offline detection
4		
Fluence, J/cm ²		
2		
1		

Figure 2. Characteristic damage curve.

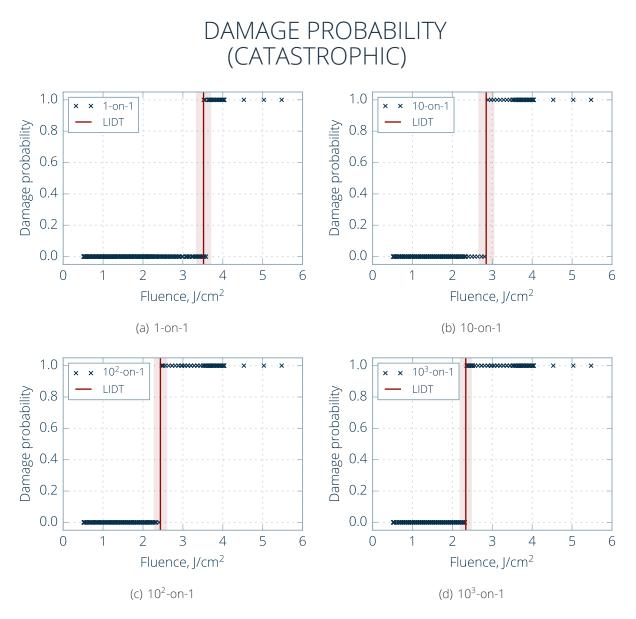


Figure 3. Damage probability plots.

TYPICAL DAMAGE MORPHOLOGY (CATASTROPHIC)

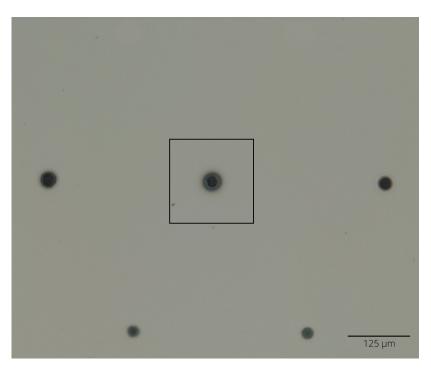


Figure 4. Typical damage morphology: fluence 3.58 J/cm², damage after 8 pulse(s).

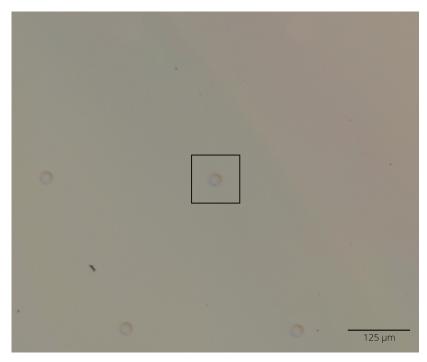


Figure 5. Typical damage morphology: fluence 4.03 J/cm², damage after 1 pulse(s).

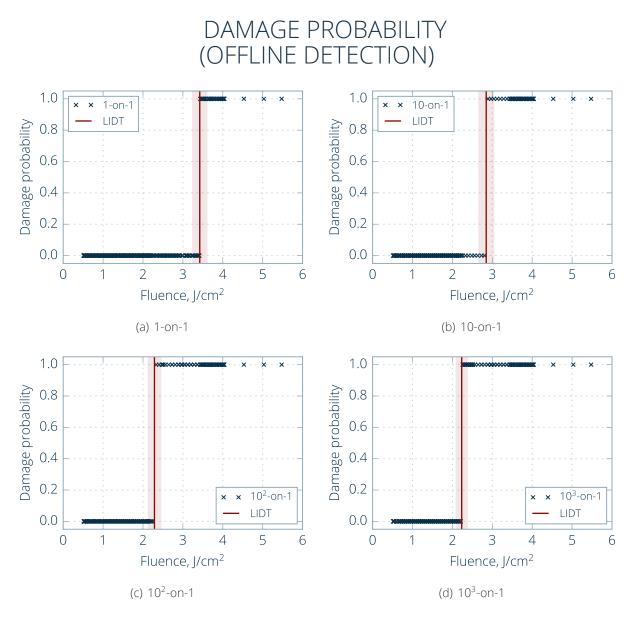


Figure 6. Damage probability plots.

TYPICAL DAMAGE MORPHOLOGY (OFFLINE DETECTION)

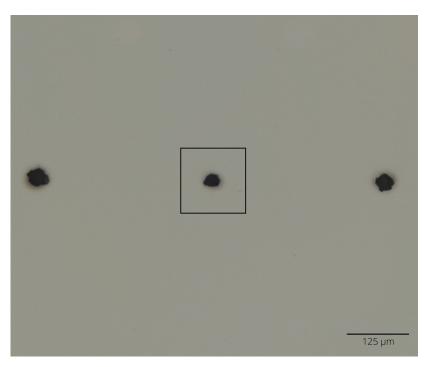


Figure 7. Typical damage morphology: fluence 2.36 J/cm², damage after 598 pulse(s).

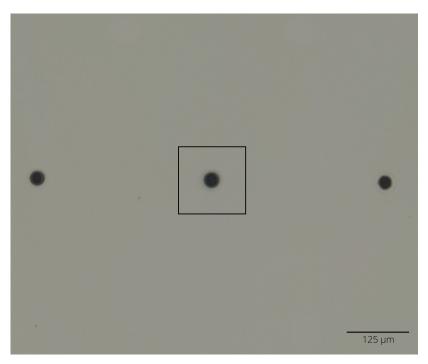


Figure 8. Typical damage morphology: fluence 3.59 J/cm², damage after 8 pulse(s).

TECHNICAL NOTES

TECHNICAL NOTE 1: Bulk damages were not found

After the test bulk damages were not found.

TECHNICAL NOTE 2: Back surface damages were not found

After the test back surface damages were not found.

TECHNICAL NOTE 3: Beam was focused inside the sample

Beam was focused inside the sample. Fluence is estimated in the beam focal spot.